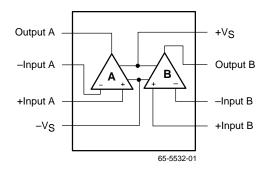


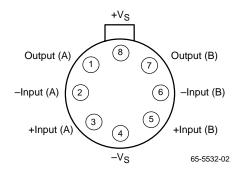
RC5532/RC5532A

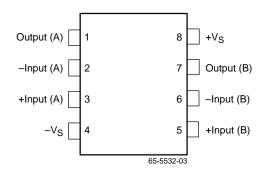
High Performance Dual Low Noise Operational Amplifier

Features


- Small signal bandwidth 10 MHz
- Output drive capability -600Ω , 10 VRMS
- Input noise voltage 5 nV/ $\sqrt{\text{Hz}}$
- DC voltage gain 50,000
- AC voltage gain 2200 at 10 KHz
- Power bandwidth 140 KHz
- Slew rate $-8 V/\mu S$
- Large supply voltage range ±3V to ±20V

Description


The RC5532 is a high performance, dual low noise operational amplifier. Compared to standard dual operational amplifiers, such as the RC747, it shows better noise performance, improved output drive capability, and considerably higher small-signal and power bandwidths.


This makes the device especially suitable for application in high quality and professional audio equipment, instrumentation, control circuits, and telephone channel amplifiers. The op amp is internally compensated for gains equal to one. If very low noise is of prime importance, it is recommended that the RC5532A version be used which has guaranteed noise specifications.

Block Diagram

Pin Assignments

Absolute Maximum Ratings

(beyond which the device may be damaged)¹

Parameter		Min.	Тур.	Max.	Units
Supply Voltage				±22	V
Input Voltage				±Vs	V
Differential Input Voltage				0.5	V
P _D T _A < 50°C	PDIP			468	mW
	CerDIP			833	
	SOIC			658	
Junction Temperature	PDIP			125	°C
	CerDIP, TO-99			175	
Storage Temperature		-65		150	°C
Operating Temperature	RM5532/A	-55		125	°C
	RC5532/A	0		70	
Lead Soldering Temperature (10 sec)				300	°C

Notes:

- 1. Functional operation under any of these conditions is NOT implied.
- 2. For supply voltages less than ± 15 V, the absolute maximum input voltage is equal to the supply voltage.
- 3. Short circuit to ground on one amplifier only.

Operating Conditions

Paran	Parameter		Min.	Тур.	Max.	Units
θЈС	Thermal resistance	CerDIP		45		°C/W
		TO-99		50		
θЈΑ	Thermal resistance	PDIP		160		°C/W
		CerDIP		150		
		TO-99		190		
For TA	> 50°C Derate at	PDIP		6.25		mW/°C
		CerDIP		8.33		
		TO-99		5.26		

DC Electrical Characteristics

(VS = ± 15 V and TA = ± 25 °C unless otherwise noted)

		RM	5532/55	32A	RC5532/5532A			
Parameters	Test Conditions	Min.	Тур.	Max.	Min. Typ.		Max.	Units
Input Offset Voltage			0.5	2.0		0.5	4.0	mV
	Over Temperature			3.0			5.0	mV
Input Offset Current				100		10	150	nA
	Over Temperature			200			200	nA
Input Bias Current			200	400		200	800	nA
	Over Temperature			700			1000	nA
Supply Current			6.0	11		6.0	16	mA
	Over Temperature			13			22	mA
Input Voltage Range		±12	±13		±12	±13		V
Common Mode Rejection Ratio		80	100		70	100		dB
Power Supply Rejection Ratio		86	100		80	100		dB
Large Signal	$R_L \ge 2 \text{ K}\Omega$, $V_{OUT} = \pm 10 \text{ V}$	50			25	100		V/mV
Voltage Gain	Over Temperature	25			15	50		
	R _L ≥ 600Ω, V _{OUT} = ±10V	40			15	50		
	Over Temperature	20			10			
Output Voltage Swing	R _L ≥ 600Ω	±12	±13		±12	±13		V
	$R_L = 600\Omega$, $V_S = \pm 18V$	±15	±16		±15	±16		
	R _L ≥ 2kΩ	±12	±13					
Input Resistance (Diff. Mode)			300			300		ΚΩ
Short Circuit Current			38			38		mA

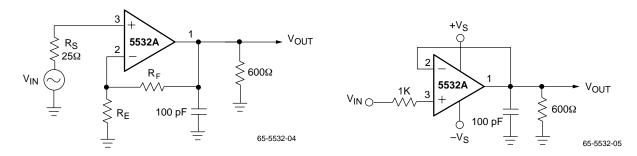
Notes:

1. Diodes protect the inputs against over-voltage. Therefore, unless current-limiting resistors are used, large currents will flow if the differential input voltage exceeds 0.6V. Maximum input current should be limited to ±10mA.

2. Over Temperature: RM = $55 \,^{\circ}\text{C} \le \text{TA} \le 125 \,^{\circ}\text{C}$; RC = $0 \,^{\circ}\text{C} \le \text{TA} \le 70 \,^{\circ}\text{C}$

Electrical Characteristics

 $(V_S = \pm 15V \text{ and } T_A = +25^{\circ}C)$


		RC/RM5532		RC/RM5532A				
Parameters	Test Conditions	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Input Noise Voltage Density	Fo = 30 Hz		8.0			8.0	12	nV/
	Fo = 1 kHz		5.0			5.0	6.0	√Hz
Input Noise Current Density	Fo = 30 Hz		2.7			2.7		pA/ √Hz
	Fo = 1 kHz		0.7			0.7		√Hz
Channel Separation	$F = 1 \text{ kHz}, R_S = 5 \text{ k}\Omega$		110			110		dB

AC Electrical Characteristics

(Vs = ± 15 V and TA = ± 25 °C)

Parameters	Test Conditions	Min.	Тур.	Max.	Units
Output Resistance	AV = 30 dB Closed Loop, F = 10 kHz, RL = 600Ω		0.3		Ω
Overshoot	Unity Gain, VIN = 100 mV _{p-p} C _L = 100 pF, R _L = 600Ω		10		%
Gain	F = 10 KHz		2.2		V/mV
Gain Bandwidth Product	$C_L = 100 \text{ pF}, R_L = 600\Omega$		10		MHz
Slew Rate			8.0		V/μS
Power Bandwidth	Vout = ±10V		140		KHz
	$VOUT = \pm 14V$, $RL = 600Ω$, $VS = \pm 18V$		100		KHz

Test Circuits

Figure 1. Closed Loop Frequency Response

Figure 2. Follower, Transient Response

Typical Performance Characteristics

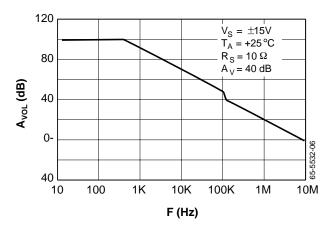


Figure 3. Open Loop Gain vs. Frequency

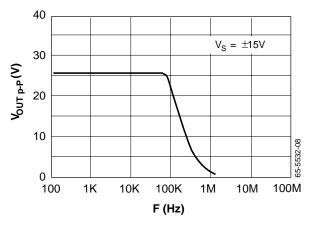


Figure 5. Output Voltage Swing vs. Frequency

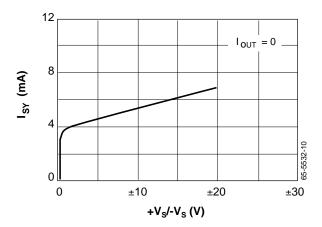


Figure 7. Supply Current vs. Supply Voltage

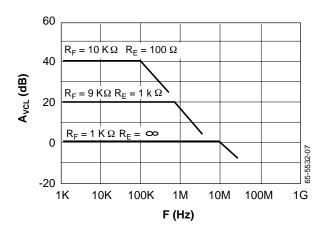


Figure 4. Closed Loop Gain vs. Frequency

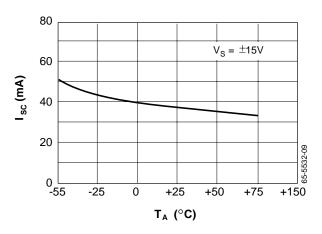


Figure 6. Short Circuit Current vs. Temperature

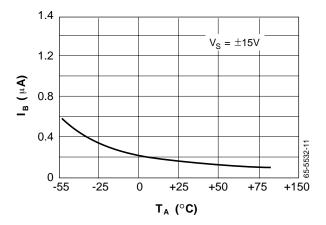
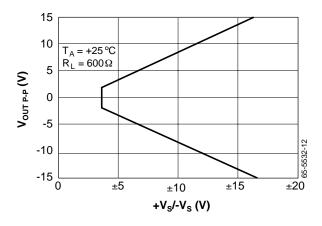



Figure 8. Input Bias Current vs. Temperature

Typical Performance Characteristics (continued)

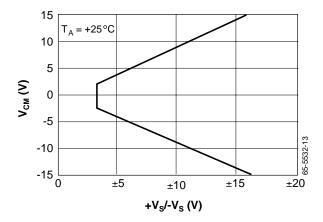
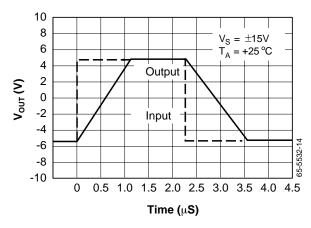



Figure 9. Output Voltage Swing vs. Supply Voltage

Figure 10. Common Mode Input Range vs. Supply Voltage

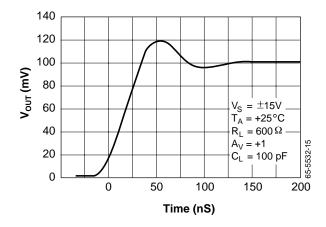
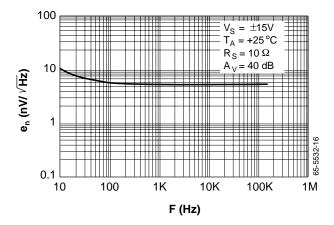
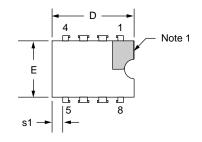
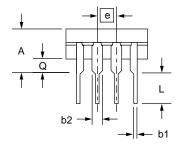


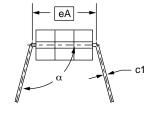
Figure 11. Follower Large Signal Pulse Response

Figure 12. Transient Response Output Voltage vs. Time

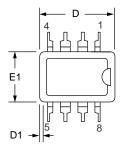

Figure 13. Input Noise Density vs. Frequency

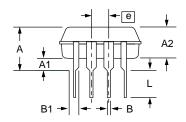
Mechanical Dimensions

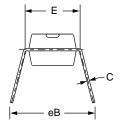

8-Lead Ceramic DIP Package

Symbol	Inc	hes	Millim	neters	Notes
Syllibol	Min.	Max.	Min.	Max.	Notes
Α	_	.200	_	5.08	
b1	.014	.023	.36	.58	8
b2	.045	.065	1.14	1.65	2, 8
c1	.008	.015	.20	.38	8
D	_	.405	_	10.29	4
Е	.220	.310	5.59	7.87	4
е	.100	BSC	2.54	BSC	5, 9
eA	.300	BSC	7.62	BSC	7
L	.125	.200	3.18	5.08	
Ø	.015	.060	.38	1.52	3
s1	.005	_	.13	_	6
α	90°	105°	90°	105°	

- Index area: a notch or a pin one identification mark shall be located adjacent to pin one. The manufacturer's identification shall not be used as pin one identification mark.
- 2. The minimum limit for dimension "b2" may be .023 (.58mm) for leads number 1, 4, 5 and 8 only.
- 3. Dimension "Q" shall be measured from the seating plane to the base plane.
- 4. This dimension allows for off-center lid, meniscus and glass overrun.
- The basic pin spacing is .100 (2.54mm) between centerlines. Each pin centerline shall be located within ±.010 (.25mm) of its exact longitudinal position relative to pins 1 and 8.
- 6. Applies to all four corners (leads number 1, 4, 5, and 8).
- 7. "eA" shall be measured at the center of the lead bends or at the centerline of the leads when " α " is 90°.
- 8. All leads Increase maximum limit by .003 (.08mm) measured at the center of the flat, when lead finish applied.
- 9. Six spaces.

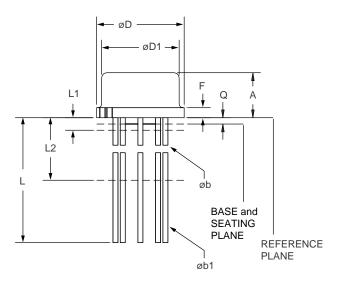


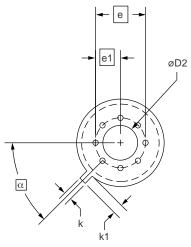

Mechanical Dimensions (continued)


8-Lead Plastic DIP Package

Cumbal	Inc	hes	Millim	neters	Notes
Symbol	Min.	Max.	Min.	Max.	Notes
A	_	.210	_	5.33	
A1	.015	_	.38	_	
A2	.115	.195	2.93	4.95	
В	.014	.022	.36	.56	
B1	.045	.070	1.14	1.78	
С	.008	.015	.20	.38	4
D	.348	.430	8.84	10.92	2
D1	.005		.13	_	
E	.300	.325	7.62	8.26	
E1	.240	.280	6.10	7.11	2
е	.100	BSC	2.54 BSC		
еВ	_	.430	_	10.92	
L	.115	.160	2.92	4.06	
N	8	3°	8	3°	5

- 1. Dimensioning and tolerancing per ANSI Y14.5M-1982.
- 2. "D" and "E1" do not include mold flashing. Mold flash or protrusions shall not exceed .010 inch (0.25mm).
- 3. Terminal numbers are for reference only.
- 4. "C" dimension does not include solder finish thickness.
- 5. Symbol "N" is the maximum number of terminals.





Mechanical Dimensions (continued)

8-Lead Metal Can IC Header Package

Cumbal	Inc	hes	Millimeters		Notes	
Symbol	Min.	Max.	Min.	Max.	Notes	
А	.165	.185	4.19	4.70		
øb	.016	.019	.41	.48	1, 5	
øb1	.016	.021	.41	.53	1, 5	
øD	.335	.375	8.51	9.52		
øD1	.305	.335	7.75	8.51		
øD2	.110	.160	2.79	4.06		
е	.200	BSC	5.08 BSC			
e1	.100	BSC	2.54	BSC		
F	-	.040	_	1.02		
k	.027	.034	.69	.86		
k1	.027	.045	.69	1.14	2	
L	.500	.750	12.70	19.05	1	
L1	_	.050	_	1.27	1	
L2	.250		6.35		1	
Ø	.010	.045	.25	1.14		
α	45°	BSC	45°	BSC		

- (All leads) øb applies between L1 & L2. øb1 applies between L2 & .500 (12.70mm) from the reference plane. Diameter is uncontrolled in L1 & beyond .500 (12.70mm) from the reference plane.
- 2. Measured from the maximum diameter of the product.
- 3. Leads having a maximum diameter .019 (.48mm) measured in gauging plane, .054 (1.37mm) +.001 (.03mm) -.000 (.00mm) below the reference plane of the product shall be within .007 (.18mm) of their true position relative to a maximum width tah
- 4. The product may be measured by direct methods or by gauge.
- All leads increase maximum limit by .003 (.08mm) when lead finish is applied.

Ordering Information

Product Number	Temperature Range	Screening	Package
RC5532D/RC5532AD	0°C to +70°C	Commercial	8 Pin Ceramic DIP
RC5532N/RC5532AN	0°C to +70°C	Commercial	8 Pin Plastic DIP
RM5532D/RM5532AD	-55°C to +125°C	Commercial	8 Pin Ceramic DIP
RM5532D/883B	-55°C to +125°C	Military	8 Pin Ceramic DIP
RM5532AD/883B	-55°C to +125°C	Military	8 Pin Ceramic DIP
RM5532T/RM5532AT	-55°C to +125°C	Commercial	8 Pin TO-99 Metal Can
RM5532T/883B	-55°C to +125°C	Military	8 Pin TO-99 Metal Can
RM5532AT/883B	-55°C to +125°C	Military	8 Pin TO-99 Metal Can

Note:

1. /883B suffix denotes MIL-STD-883, Par. 1.2.1 compliant device.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com